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LECTURE 10: THE CONFORMAL SPHERE

JACOB W. ERICKSON

Last time, we briefly explored projective geometry, which we thought
of as the geometry of sight-lines. As we shall soon see, there are many
similarities between the models for projective and conformal geometry,
many of which can be found in all parabolic model geometries.

However, there are some key differences as well. Perhaps foremost
among these differences is that the model for conformal geometry is
significantly less obvious than in projective geometry. Recall that a
conformal structure on a manifold M is an equivalence class [g], corre-
sponding to all Riemannian metrics of the form fg for some (smooth)
function f : M → R+. Deciding what should count as the stabilizer of
this structure is a bit trickier than just preserving sight-lines, especially
if we don’t necessarily know what the base manifold should be either.

Fortunately, this difficulty also gives us a convenient opportunity to
showcase a useful algebraic construction called Tanaka prolongation,
which happens to solve this issue. As such, our plan for the lecture is
as follows:

• Motivate what Tanaka prolongation does geometrically
• Explain the construction in the case of conformal geometry
• Describe conformal motion from an observer perspective
• (Appendix) Sketch how Tanaka prolongation works in general

By the end of this lecture, we should have a good idea of what the
model for conformal geometry looks like. While there are additional
nuances to more general parabolic models, many of the main ideas are
similar, so the reader will hopefully be prepared to encounter other
parabolic geometries on their own. In the next lecture, we will finally
see what a Cartan connection is, and why they’re so easy to work with.

1. From similarity to conformality

Let us imagine that we don’t already know what our model (G,P ) for
conformal geometry should be. Where’s a good place to start exploring
what this model could be?

We’re looking for a Lie group G corresponding to symmetries that
preserve a Riemannian metric up to scale. As such, a good initial
candidate would be the Lie group of similarity transformations of Rm.
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A similarity transformation of Rm is an affine transformation that pre-
serves the underlying Euclidean metric up to scale. The Lie group of
such transformations is isomorphic to Rm ⋊R+ O(m), where R+O(m)
is the group of linear transformations that are positive scalar multiples
of orthogonal transformations; for (u,A) ∈ Rm ⋊ R+O(m), as with
Euclidean geometry, the action on Rm is just (u,A) ·v = u+A(v). The
geometry of the model (Rm ⋊ R+O(m),R+O(m)) is called similarity
geometry.

This geometry looks a lot like Euclidean geometry from an observer
perspective. Thinking of Rm ⋊ R+O(m) ≃ I(m) ⋊ R+ as a bundle
of perspectives for ourselves as observers within the geometry, it’s es-
sentially the same as the Euclidean case except that we can now also
right-translate by elements of the subgroup R+1 to rescale ourselves.

Figure 1. As with Euclidean geometry, we can think of
Rm ⋊R+O(m) as a bundle of perspectives for ourselves
as observers inside similarity geometry

Let us suggestively denote by G− the subgroup of translations Rm,
and by G0 the subgroup R+O(m), so that the model for similarity
geometry is (G−G0, G0).

Inside the Lie subalgebra g0, we can preemptively denote by Egr

the element with one-parameter subgroup exp(tEgr) = e−t1; note that
adEgr restricts to multiplication by −1 on g− and vanishes on g0. We
can also define a homomorphism λ : G0 → R+ given by rA 7→ |r| for
A ∈ O(m) and r ∈ R×. The kernel of this homomorphism is just O(m),
and we can decompose G0 as exp(REgr) ker(λ) = R+ O(m).

Fixing an inner product g0 on T0Rm, corresponding to the “usual”
one for Euclidean geometry, we can determine a new inner product
φ · g0 on Tφ(0)Rm = Tq

G0
(φ)(G−G0/G0) for each φ ∈ G−G0 by

φ · g0(v, w) := g0(φ
−1
∗ (v), φ−1

∗ (w)).

In particular, the “usual” Riemannian metric for Euclidean geometry
is given by gx := x · g0 for each x ∈ Rm = G−.
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Since G− is a normal subgroup of G−G0 and G− ∩ G0 = {e}, we
have a natural quotient homomorphism πG− : G−G0 → G0. When
used together with the homomorphism λ : G0 → R+, this gives us
a convenient way of describing the inner product φ · g0 for arbitrary
φ ∈ G−G0: the subgroup G− ker(λ) = I(m) acts by isometries, so

φ · g0 = λ(πG−(φ))
−2gφ(0).

Because a Riemannian metric g̃ conformal to g is, by definition, of
the form g̃ = fg for some (smooth) function f : Rm → R+, we can
identify a choice of metric conformal to the Euclidean one with a choice
of section σf : G−G0/G0 → G−G0/ ker(λ). Explicitly, for each x ∈ G−,

we define σf (x) := x(λ−1(
√
f(x)))−1, so that

σf (x) · g0 = λ(λ−1(
√

f(x))−1)−2gx = f(x)gx = g̃x.

In other words, similar to what we saw with projective geometry last
time, we can think of the conformal structure on the base manifold
G−G0/G0 as something that “lives” in the principal exp(REgr)-bundle
G−G0/ ker(λ) over G−G0/G0.

Figure 2. Different elements of G−G0/ ker(λ) over a
given point in G−G0/G0 correspond to different choices
of inner product over that point, depicted here as the
unit disks determined by these inner products

Intuitively, this means that the fibers of G−G0/ ker(λ) over the base
manifold G−G0/G0 are like the sight-lines from projective geometry.
Indeed, the key invariant of conformal geometry is the choice of metric
up to scale, and by the above, these fibers essentially correspond to
the space of all such choices over a given point, so it makes sense that
these are what the geometry wants to keep preserved.

Now, we want to give ourselves a notion of “conformal frame”, so that
we can meaningfully place ourselves inside of this geometry. As with
projective geometry, it is convenient to build up these frames in steps.
To start, we consider the principal exp(REgr)-bundle G−G0/ ker(λ)
over G−G0/G0, which we think of as the space where the conformal
structure actually lives and whose elements correspond to choices of
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scale for the Euclidean metric at the underlying point on the base
manifold. From here, we can naturally include the orthonormal frames
for the metric at each choice of scale; this amounts to moving up to
the principal ker(λ)-bundle G−G0 over the space G−G0/ ker(λ), which
(unsurprisingly) makes G−G0 into a principal G0-bundle over the base
manifold G−G0/G0. Here, ker(λ) accounts for stabilizer motion that
preserves the metric and scale, and exp(REgr) lets us rescale directly;
neither of these changes the fact that motion from G− preserves the
scale. Thus, the final step is to include “higher-order frames” corre-
sponding to changes of perspective where motion from G− can alter
the scale.

This leads to an obvious question: what can such “higher-order
frames” be?

2. Tanaka prolongation in the conformal case

Recall that, given a parabolic model (G,P ), we can often think of the
geometry of (G−G0, G0) as a kind of affine analogue of the geometry
of (G,P ). Tanaka prolongation gives a way to reverse this analogy, so
that given the “affine version”, we can (usually) build the corresponding
parabolic structure.

Back in the conformal case, let’s work at the level of Lie algebras.
We already have a Lie algebra g− + g0, where g− is the subalgebra of
translations Rm and g0 is the subalgebra R1+o(m). Writing g−1 := g−
and g−ℓ := {0} for all ℓ > 1, this gives a (somewhat boring) graded Lie
algebra structure on g− + g0: for all i, j ≤ 0, we have [gi, gj] ⊆ gi+j.
Algebraically, the goal of Tanaka prolongation is to extend this to a
new graded Lie algebra g := g−1 + g0 + g1 + · · · . From the above, we
know that the subalgebra

∑
ℓ>0 gℓ, which we will preemptively call p+,

should correspond to changes of perspective that allow motion from g−
to change the scale.

To build this new Lie algebra, let us start by considering what g1
must do to g−: to maintain the graded structure, we need to have
[g1, g−1] ⊆ g0. Moreover, because we want the end result to be a Lie
algebra, it should satisfy the Jacobi identity, so for v, w ∈ g−1 and
α ∈ g1, we should have

0 = [α, [v, w]] = [[α, v], w] + [v, [α,w]].

Deciding1 that α ∈ g1 should be uniquely determined by the action
of adα on g−, we can therefore identify all of the possible choices for
elements of g1 with the space of linear maps α ∈ g∨− ⊗ g0 such that
[α(v), w] + [v, α(w)] = α(v)w − α(w)v = 0 for all v, w ∈ g−.

1Adding in central elements isn’t interesting in this case; if [α, g−1] = {0}, then
it isn’t doing anything.
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For context, let us give some algebraic definitions. Given an arbitrary
Lie algebra h and h-representation V , define

∂ : h∨ ⊗ V → Λ2h∨ ⊗ V

by ∂α(X ∧ Y ) := X · α(Y ) − Y · α(X) − α([X, Y ]). With this, we
can further define the space Der(h;V ) := {α ∈ h∨ ⊗ V : ∂(α) = 0} of
derivations from h to V . In our case, we are identifying g1 with the
subspace of Der(g−; g− + g0) with images contained in g0.

The space of all linear maps α : g− → g0 satisfying

α(v)w − α(w)v = 0

for all v, w ∈ g− is determined by the dim(g∨−) dim(Λ2g−) independent
linear equations

g0(ek, α(ei)ej − α(ej)ei) = 0.

In other words, we can identify the component g1 with a subspace of
g∨− ⊗ g0 of dimension

dim(g1) = dim(g∨− ⊗ g0)− dim(g∨−) dim(Λ2g−)

= dim(g∨−)(dim(g0)− dim(Λ2g−))

= dim(g∨−).

Indeed, it turns out there is a convenient identification between g∨− and
g1: for α ∈ g∨−, the corresponding map adα |g− is given by

v 7→ −α(v)1− α⊗ v + g0(v, ·)⊗ α♯,

where α♯ ∈ g− is the unique element such that g0(α
♯, ·) = α. In other

words, adα(v)w = −α(v)w − α(w)v + g0(v, w)α
♯.

Now that we have g1, we can try the same thing with g2. We want
elements β ∈ g2 to satisfy 0 = β([v, w]) = [β(v), w] + [v, β(w)], with
β(v), β(w) ∈ g1 ≈ g∨− to preserve the graded structure. From here, the
computations get a bit heinous, but the key thing to note is that, when
dim(g−) > 2, we must have g2 = {0}, so the construction stops with
g−1 + g0 + g1. Thinking of α ∈ g1 as a linear map from g− to g0, we
define

[α,R] = α ◦R− adR ◦α
for eachR ∈ g0 and define g1 to be abelian. This gives g = g−1+g0+g1 a
graded Lie algebra structure, and a faithful representation of g is given
by

(v, r1+R,α) 7→

−r (α♯)⊤ 0
v R −α♯

0 −v⊤ r

 .

Letting G be the Lie group with Lie algebra g such that G−G0 ≤ G
and G/G0 is connected, we can define P := G0P+ for P+ the connected
subgroup generated by p+ = g1, and our model for conformal geometry
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becomes (G,P ). It is not too difficult to check that G is isomorphic to
PO(1,m+ 1), with corresponding quadratic form Q on Rm+2 given by

Q

 x0

x
xm+1

 = −2x0xm+1 +
m∑
i=1

x2
i .

What about when dim(g−) = m = 2? Well, in that case, g2, and
more generally each gℓ with ℓ > 1, is not trivial, so the g we con-
struct is infinite-dimensional. This is one of the issues with Tanaka
prolongation: sometimes, the information you put into it isn’t suffi-
cient to return a finite-dimensional Lie algebra. We could probably
have expected some sort of problem here, though; in dimension two,
all holomorphic maps are conformal wherever their derivatives don’t
vanish, so we were never going to construct a finite-dimensional model
symmetry algebra for two-dimensional conformal geometry.

3. Moving around in the conformal sphere

Thinking of G as the Lie group of PO(Rm+2, Q), with Q as in the pre-
vious section, we can see that G acts transitively on the projectivized
null-cone {⟨x⟩ ∈ RPm+1 : Q(x) = 0}, and that

StabG

1
0
0

 =


a p −p(p⊤)/2
0 A −p⊤

0 0 a−1

 : a ∈ R×, p⊤ ∈ Rm, A ∈ O(m)


corresponds to the closed subgroup P , so we can identify G/P with
the projectivized null-cone.

Topologically, this projectivized null-cone is a sphere. To see this,
let x ∈ Q−1(0) \ {0}. We’re trying to understand the projectivized
null-cone, so we only care about x up to scale. In particular, we can
rescale x so that x0 + xm+1 =

√
2. Under this rescaling, we can define

y := x0−xm+1√
2

, so that

1 + y =
(x0 + xm+1) + (x0 − xm+1)√

2
=

√
2x0

and

1− y =
(x0 + xm+1)− (x0 − xm+1)√

2
=

√
2xm+1.

Thus, 1− y2 = (1 + y)(1− y) = 2x0xm+1, so

Q(x) = −2x0xm+1 +
m∑
i=1

x2
i = −1 + y2 +

m∑
i=1

x2
i = 0,

hence we can identify the projectivized null-cone with the space with
y2 +

∑m
i=1 x

2
i = 1, namely the m-sphere. Because of this, we call G/P

the conformal sphere.
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Alternatively, we can think of G/P as the one-point compactification
of G−G0/G0

∼= Rm. The subgroup G− takes the form
 1 0 0

v 1 0
−v⊤v/2 −v⊤ 1

 : v ∈ Rm

 ,

so

G−

1
0
0

 =


 1

v
−v⊤v/2

 : v ∈ Rm


gives us our open cell. The complement of this open cell inside the

projectivized null-cone is the single point
(

0
0
1

)
, which we can think of

as the “point at infinity” for the copy of Euclidean space given by the
open cell.

As for movement within G, things are much the same as with pro-
jective geometry. At each configuration g ∈ G, we determine a copy
q
P
(gG−) of Euclidean space corresponding to motion from G−. Using

exp(REgr), we can control the scale of that copy of Euclidean space,
and with ker(λ), we can move amongst the different orthonormal frames
for that point in Euclidean space. Finally, the subgroup P+ gives us
“unipotent tilts”, which let us tilt between different copies of Euclidean
space through our underlying point q

P
(g) ∈ G/P .

Figure 3. In conformal geometry, the trajectories of
motion from one-parameter subgroups in G− are not
uniquely determined by an initial velocity in the base
manifold
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Perhaps the main difference here is that motion from G− no longer
determines consistent curves on the base manifold up to reparametriza-
tion. However, again, the motion is consistent and meaningful inside
of G.

Appendix: Tanaka prolongation in general

Both conformal and projective geometry are |1|-graded, meaning
that the grading of g determined by a Cartan involution θ and the
parabolic p is of the form g−1 + g0 + g1. This makes many algebraic
aspects of these geometries fairly simplistic compared to the general
case. In particular, Tanaka prolongation is a bit more involved when
there are multiple negative grading components.

Let’s imagine we have a graded nilpotent Lie algebra

g− = g−k + · · ·+ g−1,

with [g−i, g−j] ⊆ g−i−j, together with another Lie algebra g0 that both
acts on g− by derivations—so R · [v, w] = [R · v, w] + [v,R · w] for all
R ∈ g0 and v, w ∈ g−—and preserves the grading—so R · g−i ⊆ g−i for
every R ∈ g0 and each i ≥ 1. We consider the semidirect sum g− B g0,
which we will write as just g− + g0; what is the corresponding Tanaka
prolongation?

In essence, we follow the same idea as before: build up positive
grading components piece by piece. To start, we want g1, consisting of
elements that act as derivations that send each g−i to g−i+1. In other
words, we are looking for

g1 := {α ∈ Der(g−; g− + g0) : α(g−i) ⊆ g−i+1 for each i > 0}.

Naturally, g− + g0 + g1 is a representation of g− + g0: given α ∈ g1, we
have v ·α = −α(v) for v ∈ g− and R ·α = adR ◦α−α ◦ adR for R ∈ g0.
Next, we want to build a grading component g2 of degree 2, so that

its elements act as derivations sending each g−i to g−i+2. Symbolically,
this means

g2 := {β ∈ Der(g−; g− + g0 + g1) : β(g−i) ⊆ g−i+2 for each i > 0}.

Again, g− + g0 + g1 + g2 is a representation of g− + g0: for β ∈ g2,
v · β = −β(v) and R · β = adR ◦β − β ◦ adR as before.

We continue this process, recursively defining

gℓ :=

{
ζ ∈ Der

(
g−;
∑
j<ℓ

gj

)
: ζ(g−i) ⊆ g−i+ℓ for each i > 0

}
for each ℓ > 0. Letting g be the representation of g− + g0 given by the
sum

g := g− + g0 +
∑
ℓ>0

gℓ
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of all of these grading components, we imbue it with a Lie algebra
structure as follows. First, the bracket agrees with the bracket of g−+g0
when restricted there, and for each α ∈

∑
ℓ>0 gℓ and X ∈ g− + g0,

[X,α] := X ·α, where · denotes the representation action of g−+ g0 on
g. From here, we want to continue defining the bracket in a way that
satisfies the Jacobi identity, so that

[α, β](v) = [[α, β], v] = [[α, v], β] + [α, [β, v]] = [α(v), β] + [α, β(v)]

for α, β ∈
∑

ℓ>0 gℓ and v ∈ g−. Conveniently, this gives us a way
to construct the bracket recursively as well: for α, α′ ∈ g1, we define
[α, α′] ∈ g2 ⊆ Der(g−; g− + g0 + g1) to be the unique element of the
form

[α, α′](v) = [α(v), α′] + [α, α′(v)]

for each v ∈ g−. Since α(v), α′(v) ∈ g− + g0, we already know that
[α(v), α′] = α(v) · α′ and [α, α′(v)] = −α′(v) · α, so this bracket is
well-defined. Then, for arbitrary β ∈ gi and ζ ∈ gj, we can recursively
define [β, ζ] ∈ gi+j to be the unique element such that

[β, ζ](v) = [β(v), ζ] + [β, ζ(v)]

for each v ∈ g−. Since β(v) ∈
∑

ℓ<i gℓ and ζ(v) ∈
∑

ℓ<j gℓ, if we know
how to form brackets with elements in grading components of lesser
degree, then these brackets are well-defined as well.

Thus, we get a Lie algebra g. If gℓ = {0} for every ℓ greater than
some k, then g is finite-dimensional and p+ :=

∑
ℓ>0 gℓ is a nilpotent

subalgebra. Because [gi, [gj, gℓ]] ⊆ gi+j+ℓ, we must have ŋ(gi, gj) = {0}
unless i+ j = 0, so if g is semisimple, then g− and p+ must be ŋ-dual.
In particular, if g is semisimple, then p := g0+p+ must satisfy p⊥ = p+,
hence p must be parabolic.


